Разница между аналоговым и цифровым сигналом. Цифровой и аналоговый сигнал

Разница между аналоговым и цифровым сигналом. Цифровой и аналоговый сигнал

01.05.2024

Сигналами называют информационные коды, которые применяются людьми для того, чтобы передавать сообщения в информационной системе. Сигнал может подаваться, но его получение не обязательно. Тогда как сообщением можно считать только такой сигнал (или совокупность сигналов), который был принят и декодирован получателем (аналоговый и цифровой сигнал).

Одними из первых методов передачи информации без участия людей или других живых существ были сигнальные костры. При возникновении опасности последовательно разводились костры от одного поста к другому. Далее мы будем рассматривать способ передачи информации при помощи электромагнитных сигналов и подробно остановимся на рассмотрении темы аналоговый и цифровой сигнал .

Любой сигнал может быть представлен в виде функции, которая описывает изменения его характеристик. Такое представление удобно для изучения устройств и систем радиотехники. Помимо сигнала в радиотехнике есть еще шум, который является его альтернативой. Шум не несет полезной информации и искажает сигнал, взаимодействуя с ним.

Само понятие дает возможность отвлечься от конкретных физических величин при рассмотрении явлений, связанных с кодированием и декодированием информации. Математическая модель сигнала в исследованиях позволяет опираться на параметры функции времени.

Типы сигналов

Сигналы по физической среде носителя информации делятся на электрические, оптические, акустические и электромагнитные.

По методу задания сигнал может быть регулярным и нерегулярным. Регулярный сигнал представляется детерминированной функцией времени. Нерегулярный сигнал в радиотехнике представлен хаотической функцией времени и анализируется вероятностным подходом.

Сигналы в зависимости от функции, которая описывает их параметры могут быть аналоговыми и дискретными. Дискретный сигнал, который был подвергнут квантованию называется цифровым сигналом.

Обработка сигнала

Аналоговый и цифровой сигнал обрабатывается и направлен на то, чтобы передать и получить информацию, закодированную в сигнале. После извлечения информации ее можно применять в разных целях. В частных случаях информация подвергается форматированию.

Аналоговые сигналы подвергаются усилению, фильтрации, модуляции и демодуляции. Цифровые же помимо этого еще могут подвергаться сжатию, обнаружению и др.

Аналоговый сигнал

Наши органы чувств воспринимают всю поступающую в них информацию в аналоговом виде. К примеру, если мы видим проезжающий мимо автомобиль, мы видим его движение непрерывно. Если бы наш мозг мог получать информацию о его положении раз в 10 секунд, люди бы постоянно попадали под колеса. Но мы можем оценивать расстояние куда быстрее и это расстояние в каждый момент времени четко определено.

Абсолютно то же самое происходит и с другой информацией, мы можем оценивать громкость в любой момент, чувствовать какое давление наши пальцы оказывают на предметы и т.п. Иными словами, практически вся информация, которая может возникать в природе имеет аналоговый вид. Передавать подобную информацию проще всего аналоговыми сигналами, которые являются непрерывными и определены в любой момент времени.

Чтобы понять, как выглядит аналоговый электрический сигнал, можно представить себе график, на котором будет отображена амплитуда по вертикальной оси и время по горизонтальной оси. Если мы, к примеру, замеряем изменение температуры, то на графике появится непрерывная линия, отображающая ее значение в каждый момент времени. Чтобы передать такой сигнал с помощью электрического тока, нам надо сопоставить значение температуры со значением напряжения. Так, например, 35.342 градуса по Цельсию могут быть закодированы как напряжение 3.5342 В.

Аналоговые сигналы раньше использовались во всех видах связи. Чтобы избежать помех такой сигнал нужно усиливать. Чем выше уровень шума, то есть помех, тем сильнее надо усиливать сигнал, чтобы его можно было принять без искажения. Такой метод обработки сигнала затрачивает много энергии на выделение тепла. При этом усиленный сигнал может сам стать причиной помех для других каналов связи.

Сейчас аналоговые сигналы еще применяются в телевидении и радио, для преобразования входного сигнала в микрофонах. Но, в целом, этот тип сигнала повсеместно вытеснен или вытесняется цифровыми сигналами.

Цифровой сигнал

Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются.

В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0». Если мы вспомним наш пример с измерением температуры, то тут сигнал будет сформирован иначе. Если напряжение, которое подается аналоговым сигналом соответствует значению измеряемой температуры, то в цифровом сигнале для каждого значения температуры будет подаваться определенное количество импульсов напряжения. Сам импульс напряжения тут будет равен «1», а отсутствие напряжения – «0». Приемная аппаратура будет декодировать импульсы и восстановит исходные данные.

Представив, как будет выглядеть цифровой сигнал на графике, мы увидим, что переход от нулевого значения к максимальному производится резко. Именно эта особенность позволяет принимающей аппаратуре более четко «видеть» сигнал. Если возникают какие-либо помехи, приемнику проще декодировать сигнал, нежели чем при аналоговой передаче.

Однако цифровой сигнал с очень большим уровнем шума восстановить невозможно, тогда как из аналогового типа при большом искажении еще есть возможность «выудить» информацию. Это связано с эффектом обрыва. Суть эффекта в том, что цифровые сигналы могут передаваться на определенные расстояния, а затем просто обрываются. Этот эффект возникает повсеместно и решается простой регенерацией сигнала. Там, где сигнал обрывается, нужно вставить повторитель или уменьшить длину линии связи. Повторитель не усиливает сигнал, а распознает его изначальный вид и выдает его точную копию и может использоваться сколь угодно в цепи. Такие способы повторения сигнала активно применяются в сетевых технологиях.

Помимо всего прочего аналоговый и цифровой сигнал различается и возможность кодирования и шифрования информации. Это является одной из причин перехода мобильной связи на «цифру».

Аналоговый и цифровой сигнал и цифро-аналоговое преобразования

Следует еще немного рассказать о том, как аналоговая информация передается по цифровым каналам связи. Вновь прибегнем к примерам. Как уже говорилось звук – это аналоговый сигнал.

Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Звук, попадая в микрофон подвергается аналого-цифровому преобразованию (АЦП). Этот процесс состоит из 3 ступеней. Берутся отдельные значения сигнала через одинаковые отрезки времени, этот процесс называется дискретизация. По теореме Котельникова о пропускной способности каналов, частота взятия этих значений должна быть вдвое выше, чем самая высокая частота сигнала. То есть, если в нашем канале стоит ограничение на частоту в 4 кГц, то частота дискретизации будет составлять 8 кГц. Далее все выбранные значения сигнала округляются или, иначе говоря, квантуются. Чем больше уровней при этом будет создано, тем выше будет точность восстановленного сигнала на приемнике. Затем все значения преобразуются в двоичный код, который передается на базовую станцию и затем доходит до другого абонента, являющегося приемником. В телефоне приемника происходит процедура цифро-аналогового преобразования (ЦАП). Это обратная процедура, цель которой на выходе получить сигнал как можно более идентичный исходному. Далее уже аналоговый сигнал выходит в виде звука из динамика телефона.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

Цифровая схемотехника – важнейшая дисциплина, которую изучают во всех высших и средних учебных заведениях, готовящих специалистов в электронике. Настоящий радиолюбитель тоже должен хорошо разбираться в этом вопросе. Но большинство книг и учебных пособий написаны очень сложным для понимания языком, и начинающему электронщику (возможно, школьнику) будет тяжело освоить новую информацию. Цикл новых обучающих материалов от Мастер Кит призван восполнить этот пробел: в наших статьях о сложных понятиях рассказывается самыми простыми словами.


8.1. Аналоговые и цифровые сигналы

Сначала надо разобраться, чем вообще аналоговая схемотехника отличается от цифровой. И главное отличие – в сигналах, с которыми работают эти схемы.
Все сигналы можно разделить на два основных вида: аналоговые и цифровые.

Аналоговые сигналы

Аналоговые сигналы наиболее привычны для нас. Можно сказать, что весь окружающий природный мир вокруг нас – аналоговый. Наши зрение и слух, а также все остальные органы чувств воспринимают поступающую информацию в аналоговой форме, то есть непрерывно во времени. Передача звуковой информации – речь человека, звуки музыкальных инструментов, рёв животных, звуки природы и т.п. – также осуществляется в аналоговом виде.
Чтобы ещё лучше понять этот вопрос, нарисуем аналоговый сигнал (рис.1.):

Рис.1. Аналоговый сигнал

Мы видим, что аналоговый сигнал непрерывен во времени и по амплитуде. Для любого момента времени можно определить точное значение амплитуды аналогового сигнала.

Цифровые сигналы

Давайте будет анализировать амплитуду сигнала не постоянно, а дискретно, через фиксированные промежутки времени. Например, раз в секунду, или чаще: десять раз в секунду. То, как часто мы будем это делать, называется частотой дискретизации: один раз в секунду – 1 Гц, тысячу раз в секунду – 1000 Гц или 1 кГц.

Для наглядности нарисуем графики аналогового (вверху) и цифрового (внизу) сигналов (рис.2.):

Рис.2. Аналоговый сигнал (вверху) и его цифровая копия (внизу)

Мы видим, что в каждый мгновенный промежуток времени можно узнать мгновенное цифровое значение амплитуды сигнала. Что происходит с сигналом (по какому закону он меняется, какова его амплитуда) между интервалами «проверки», мы не знаем, эта информация потеряна для нас. Чем реже мы проверяем уровень сигнала (чем ниже частота дискретизации), тем меньше имеем информации о сигнале. Разумеется, справедливо и обратное: чем выше частота дискретизации, тем лучше качество представления сигнала. В пределе, увеличивая частоту дискретизации до бесконечности, мы получаем практически тот же аналоговый сигнал.
Значит ли это, что аналоговый сигнал в любом случае качественнее цифрового? В теории, пожалуй, да. Но на практике современные аналого-цифровые преобразователи (АЦП) работают с такой высокой частотой дискретизации (до нескольких миллионов выборок в секунду), так качественно описывают аналоговый сигнал в цифровой форме, что органы чувств человека (глаза, уши) уже не могут почувствовать разницу между оригинальным сигналом и его цифровой моделью. Цифровой сигнал обладает очень существенным достоинством: его легче передавать по проводам или радиоволне, помехи не оказывают на такой сигнал существенного влияния. Поэтому вся современная мобильная связь, теле- и радиовещание - цифровая.

Нижний график на рис. 2 легко представить и в другом виде – как длинную последовательность пары цифр: время/амплитуда. А цифры – это как раз то, что нужно цифровым схемам. Правда, цифровые схемы предпочитают работать с цифрами в особом представлении, но об этом мы поговорим в следующем уроке.

Сейчас мы можем сделать важные выводы:

Цифровой сигнал дискретен, его можно определить только для отдельных моментов времени;
- чем выше частота дискретизации – тем лучше точность представления цифрового сигнала.

  • Tutorial

Всем привет. В этой статье я хотел бы рассказать немного об основных приемах и идеях современной цифровой беспроводной связи - на примере стандарта IEEE 802.11. В наше время очень часто люди живут на довольно высоких уровнях абстракции, плохо представляя как именно работают окружающие нас вещи. Ну что ж - попытаюсь принести в массы свет просвещения. В статье будут использоваться вещи и терминология, объясненные в этой статье . Так что людям, далеким от радиотехники рекомендуется сначала прочитать её.
DANGER: в статье присутствует матан - особо впечатлительным не нажимать на эту кнопку:

Цифровые сигналы и спектры

Аналоговые сигналы
До развития компьютеров - посредством радиоволн передавались обычно аналоговые сигналы - то есть сигналы, множество значений которых непрерывно .

Например - звук - зависимость давления от времени. Полученный с приемника сигнал (напряжение) поступает на усилитель звуковой частоты и заставляет колебаться динамик.

Или видеосигнал для кинескопа. Уровень сигнала определяет значение мощности, бегающего по экрану лучика, который в нужные моменты времени засвечивает люминофор, формируя изображение на экране

Основной минус такого способа передачи информации - низкая помехоустойчивость - передающая среда всегда вносит в наш сигнал какую то случайную составляющую - изменение формы видеосигнала меняет цвета отдельных пикселей(все мы помним шумы радиоприемника и рябь на экране телевизора).

Цифровые сигналы
Цифровые сигналы - то есть сигналы, имеющие дискретное множество значений - по этому параметру значительно лучше аналоговых, так как нас интересует не непосредственно значение сигнала, а диапазон в котором находится это значение и помеха нам не страшна(например в диапазоне напряжений 0В - 1.6В мы считаем, что это лог 0, а в диапазоне 3.3В - 5В лог 1). Расплата за это - увеличение требуемой скорости передачи и обработки информации.


Первое, что люди научились делать - естественно передавать такие сигналы по проводам, просто переключая состояние линии данных и синхронизации из единицы в ноль.
На этом небольшой ликбез закончен - далее речь пойдет о том - а как же передается цифровой сигнал при помощи радиоволн. Как работает WiFi.
Спектр единичного импульса
В радиосвязи нас часто интересует спектр сигнала - цифровой сигнал - последовательность прямоугольных импульсов - для начала рассмотрим спектр одного прямоугольного импульса.
Вспомним - что такое спектр(коэффициент перед интегралом опущен):

Спектр прямоугольного импульса длительностью T и амплитудой A :


Таак - а как же быть с отрицательной амплитудой? Вспомним что в действительных числах спектр раскладывается на сумму синусов и косинусов с нулевыми фазами -

В такой форме на самом деле удобней представлять в компьютере, но для анализа такая форма совершенно неудобна - при изменениях сигнала во временнОй области - спектры будут меняться совершенно непонятным для человека образом, поэтому два спектра синусных компонент и косинусных компонент преобразуют в полярные координаты, сворачивая пары синусов и косинусов с нулевой фазой в синус с ненулевой фазой, получая амплитудный спектр и фазовый, а теперь вспомним, что домножение сигнала на -1 - эквивалентно скачку фазы на 180 градусов, поэтому отрицательная часть отразится относительно горизонтальной оси, а в точках перегиба - фаза будет испытывать скачок на 180 градусов.

Также видим, что спектр одиночного импульса представляет собой sinc функцию , довольно часто встречающуюся в цифровой обработке сигналов и радиотехнике.

Почти вся энергия импульса содержится в центральном пике спектра - его ширина обратно пропорциональна длительности импульса. А высота - прямо пропорциональна - то есть - чем длиннее импульс - тем уже и выше его спектр, а чем короче - тем ниже и шире.
Спектр последовательности импульсов с хорошей степенью точности можно считать совокупностью гармоник в спектральной полосе, ширина которой обратно пропорциональна длительности импульса T.

Итак - вывод - уменьшая длину импульсов нашего цифрового сигнала мы можем размазывать сигнал по широкой полосе спектра - при этом пропорционально уменьшается его высота - при увеличении полосы в N раз - во столько же уменьшится высота спектра вплоть до уровня шумов. Широкополосная передача имеет довольно много плюсов - один из них - устойчивость к узкополосным помехам - так как информация размазана по спектру - узкополосная помеха портит только малую часть этой информации.

Если тупо уменьшить длину импульсов нашего информационного сигнала - спектр, конечно, уширится, но ведь приемник не знает какую информацию мы ему передаем и не сможет выделить её из шумов. Поэтому необходим способ - преобразовать узкополосный сигнал в широкополосный шумоподобный - для передачи по радиоканалу, а после приема преобразовать обратно в узкополосный - нужно добавлять в сигнал избыточную информацию, то есть информацию, известную и приемнику и передатчику, при помощи которой приемник может отличить сигнал от шумов. Закодируем каждый бит информации известной и приемнику и передатчику последовательностью.

Автокорреляционная функция. Коды Баркера
Наша задача - найти в длинной последовательности входных данных заранее известную короткую последовательность.
Автокорреляция - статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом.
Особое значение данный параметр имеет в локации - вот сгенерировали мы какой то сигнал и засекли время - скорость распространения сигнала нам известна, значит зная время, которое потребовалось сигналу, чтобы сбегать до препятствия и обратно - мы можем вычислить расстояние для препятствия. Но вот незадача - идеальных условий в жизни не бывает - как правило вокруг очень много шумов и вместе с отраженным сигналом на вход приемника поступает всякий мусор. А мы во-первых не должны спутать наш сигнал ни с чем другим, во вторых - достаточно точно определить момент времени, когда он вернулся назад.


Математически - автокорреляция определяется так:

То есть мы накладываем функцию на саму себя, но со сдвигом - перемножаем и вычисляем интеграл, отмечаем точку, затем опять сдвигаем, опять вычисляем интеграл и так для всех возможных сдвигов. Если мы прикладываем функцию не к самой себе, а к какой то другой, то это называется просто корреляция .
На приведенной ниже картинке демонстрируются операции свертки , корреляции и автокорреляции .
Отличие свертки и корреляции - в направлении - свертка функций f(x) и g(x) - это та же корреляция, только функций f(x) и g(-x), автокорреляция - корреляция функции с самой собой


То есть в момент времени, когда входной сигнал наиболее похож на нужную нам функцию - корреляционная функция будет иметь пик. Ширина этого пика, если не брать во внимание шум - будет равна удвоенной длине зондирующего импульса и будет симметричной относительно центрального пика - даже если исследуемый сигнал не является симметричным. К слову - пиков может быть несколько - центральный пик и так называемые боковые лепестки - зависит от функции. Корреляционный метод является самым оптимальным методом определения сигнала известной формы на фоне белого шума - другими словами метод имеет наилучшее отношение сигнал/шум. Зондирующий импульс должен удовлетворять следующим требованиям - иметь как можно более узкий центральный пик и при этом иметь минимальный уровень боковых лепестков, то есть функция похожа сама на себя только в очень коротком интервале времени - чуть сдвинуть и она становится совершенно непохожа. В локации этим требованиям удовлетворяет ЛЧМ сигнал .
Имеющий минимальный уровень боковых лепестков, автокорреляционная функция ЛЧМ сигнала имеет следующий вид:


Аналогом ЛЧМ сигнала в дискретных системах является последовательность Баркера
Например - известная последовательность длинной 11 бит: 11100010010.
Найдем автокорреляционную функцию этой последовательности, циклически сдвигая её и считая сумму попарных произведений, при этом заменив 0 на -1
11100010010
11100010010
11
11100010010
01110001001
-1
11100010010
10111000100
-1
11100010010
01011100010
-1
11100010010
00101110001
-1
11100010010
10010111000
-1

И так далее - в общем автокорреляционная функция имеет значение 11 только при полном совпадении, во всех остальных случаях - -1.
То же самое справедливо и для инверсии последовательности, то есть для 00011101101. Плюс ко всему - прямая и инверсная последовательности слабо коррелируют между собой - мы их не спутаем.
Получается, что мы можем каждый бит информации кодировать 11 битами последовательности Баркера - прямой для единиц и инверсной для нулей. Элементы последовательности Баркера называют чипами .На практике кодирование происходит примерно так:


Приемник просто может считать корреляцию последовательностей Баркера(прямой и инверсной) и входного сигнала и по пикам корреляционной функции определять - где во входном сигнале закодированы нули, а где - единицы
Модуляция
В общем - как сделать из узкополосного информационного сигнала - широкополосный шумоподобный, а потом его восстановить - разобрались. Теперь поговорим немного о способах передачи данных через среду - средой может быть вакуум, воздух, оптоволокно, провод и т.д. Для того чтобы передавать сигнал при помощи радиоволн нам нужна несущая частота, промодулировав её - мы насаживаем нашу информацию на несущую. Есть 3 основных типа модуляции - амплитудная, частотная и фазовая.
Можно наш готовый к передаче сигнал направить на переключатель и просто включать-выключать передачу несущей - тем самым промодулировав амплитуду

Достоинства и недостатки амплитудной модуляции рассматривались в этой статье , так что подробно здесь останавливаться на ней не будем - в настоящее время амплитудная модуляция почти не применяется.

Следующий тип модуляции - частотная , когда сигнал данных управляет частотой несущей - либо напрямую (ГУН), либо переключаясь между двумя разными генераторами(при этом происходит скачок фазы)

Тут тоже есть что сказать, но как нибудь в другой раз - иначе статья получится слишком уж большой.

Фазовая модуляция
Несложно догадаться - что тут мы кодируем информацию в фазе сигнала - например нуль соответствует нулевому сдвигу по фазе, а единица - сдвигу на 180 градусов - такой способ кодировки легко реализовать технически - например умножая сигнал на 1 - имеем нулевой фазовый сдвиг, а умножая на -1 - сдвиг на 180 градусов. Такая модуляция называется Binary Phase Shift Key или BPSK


А что если мы хотим иметь больше фазовых сдвигов? Для начала объясню логику инженеров, которые придумали следующие танцы с бубном - у вас всего 2 управляющих сигнала - 1 и -1 и при помощи них нужно наиболее простым способом закодировать произвольное число фазовых сдвигов - можно конечно поставить какой нибудь супер ЦАП и управлять генерируемой частотой напрямую, но математика предлагает нам кое что получше. А именно вот эту формулу:

К слову - на ее основе мы произвели переход от спектров синусоид и косинусоид с нулевыми фазами к спектру синусоид с ненулевыми фазами и фазовому спектру - теперь мы просто делаем обратное преобразование.

На этом основана Квадратурная Модуляция

Вместе с несущей мы генерируем еще один сигнал, который сдвинут относительно несущей на 90 градусов, то есть находится с ней в квадратуре . Теперь - управляя амплитудой каждого сигнала(In phase и Quadrature) - умножая на 1 или -1, а затем суммируя - мы можем получить уже 4 возможных фазовых сдвига.


Теперь за раз мы можем кодировать 2 бита. То есть скорость передачи возрастает вдвое. Но и вероятность ошибки при тоже неизбежно возрастет.

Аналогичным образом можно получить большее число фазовых сдвигов. Возможные состояния сигнала обычно показывают на векторной диаграмме или на плоскости сигнального созвездия


Обратите внимание, что последовательность бинарных слов на диаграмме представляет собой

Человек ежедневно разговаривает по телефону, смотрит передачи различных телеканалов, слушает музыку, бороздит по просторам интернета. Все средства связи и иная информационная среда основываются на передаче сигналов различных типов. Многие задаются вопросами о том, чем отличается аналоговая информация от других видов данных, что такое цифровой сигнал. Ответ на них можно получить, разобравшись в определении различных электросигналов, изучив их принципиальное отличие между собой.

Аналоговый сигнал

Аналоговый сигнал (континуальный) – естественный инфосигнал, имеющий некоторое число параметров, которые описываются временной функцией и беспрерывным множеством всевозможных значений.

Человеческие органы чувств улавливают всю информацию из окружающей среды в аналоговом виде. Например, если человек видит рядом проезжающий грузовик, то его движение наблюдается и изменяется непрерывно. Если бы мозг получал информацию о передвижении автотранспорта раз в 15 секунд, то люди всегда бы попадали под его колеса. Человек оценивает расстояние моментально, и в каждый временной момент оно определено и различно.

То же самое происходит и с иной информацией – люди слышат звук и оценивают его громкость, дают оценку качеству видеосигнала и тому подобное. Соответственно, все виды данных имеют аналоговую природу и постоянно изменяются.

На заметку. Аналоговый и цифровой сигнал учувствует в передаче речи собеседников, которые общаются по телефону, сеть интернет работает на основе обмена этих каналов сигналов по сетевому кабелю. Такого рода сигналы имеют электрическую природу.

Аналоговый сигнал описывается математической временной функцией, похожей на синусоиду. Если совершить замеры, к примеру, температуры воды, периодически нагревая и охлаждая ее, то на графике функции будет отображена беспрерывная линия, которая отражает ее значение в каждый временной промежуток.

Во избежание помех такие сигналы требуется усиливать посредством специальных средств и приборов. Если уровень помех сигнала высокий, то и усилить его нужно сильнее. Этот процесс сопровождается большими затратами энергии. Усиленный радиосигнал, например, нередко сам может стать помехой для иных каналов связи.

Интересно знать. Аналоговые сигналы ранее применялись в любых видах связи. Однако сейчас он повсеместно вытесняется или уже вытеснен (мобильная связь и интернет) более совершенными цифровыми сигналами.

Аналоговое и цифровое телевидение пока сосуществуют вместе, но цифровой тип телерадиовещания с большой скоростью сменяет аналоговый способ передачи данных из-за своих существенных преимуществ.

Для описания этого типа инфосигнала применяются три основных параметра:

  • частота;
  • протяженность волны;
  • амплитуда.

Недостатки аналогового сигнала

Аналоговый сигнал имеют нижеследующие свойства, в которых прослеживается их разница от цифрового варианта:

  1. Этот вид сигналов характеризуется избыточностью. То есть аналоговая информация в них не отфильтрована – несут много лишних информационных данных. Однако пропустить информацию через фильтр возможно, зная дополнительные параметры и природу сигнала, например, частотным методом;
  2. Безопасность. Он практически полностью беспомощен перед неавторизированными вторжениями извне;
  3. Абсолютная беспомощность перед разнородными помехами. Если на канал передачи данных наложена любая помеха, то она будет в неизменном виде передана сигнальным приемником;
  4. Отсутствие конкретной дифференциации уровней дискретизации – качество и количество передаваемой информации ничем не ограничивается.

Вышеприведенные свойства являются недостатками аналогового способа передачи данных, на основании которых можно считать его полностью себя изжившим.

Цифровой и дискретный сигналы

Цифровые сигналы – искусственные инфосигналы, представленные в виде очередных цифровых значений, которые описывают конкретные параметры предаваемой информации.

Для информации. Сейчас преимущественно применяется простой в кодировании битовый поток – двоичный цифровой сигнал. Именно такой тип может использоваться в двоичной электронике.

Различие цифрового типа передачи данных от аналогового варианта состоит в том, что такой сигнал имеет конкретное число значений. В случае с битовым потоком их два: «0» и «1».

Переход от нулевого значения к максимальному в цифровом сигнале производится резко, что позволяет принимающему оборудованию более четко считывать его. При появлении определенных шумов и помех приемнику будет легче декодировать цифровой электросигнал, чем при аналоговой информационной передаче.

Однако цифровые сигналы отличаются от аналогового варианта одним недостатком: при высоком уровне помех их восстановить невозможно, а из континуального сигнала присутствует возможность извлечения информации. Примером этому может послужить разговор по телефону двух человек, в процессе которого могут пропадать целые слова и даже словосочетания одного из собеседников.

Этот эффект в цифровой среде называется эффектом обрыва, который можно локализовать уменьшением протяженности линии связи или установкой повторителя, какой полностью копирует изначальный вид сигнала и передает его дальше.

Аналоговая информация может передаваться по цифровым каналам, пройдя процесс оцифровки специальными устройствами. Такой процесс именуется аналогово-цифровым преобразованием (АЦП). Данный процесс может быть и обратным – цифро-аналоговое преобразование (ЦАП). Примером устройства ЦАП может послужить приемник цифрового ТВ.

Цифровые системы также отличает возможность шифрования и кодирования данных, которая стала важной причиной оцифровывания мобильной связи и сети интернет.

Дискретный сигнал

Существует и третий тип информации – дискретная. Сигнал такого рода является прерывистым и меняется за момент времени, принимая любое из возможных (предписанных заранее) значений.

Дискретная передача информации характеризуется тем, что изменения происходят по трем сценариям:

  1. Электросигнал меняется только по времени, оставаясь непрерывным (неизменным) по величине;
  2. Он изменяется только по уровню величины, оставаясь непрерывным по временному параметру;
  3. Также он может изменяться одномоментно и по величине, и по времени.

Дискретность нашла применение при пакетной передаче большого объема данных в вычислительных системах.

На основании вышесказанного можно определить, что непрерывность и множественность значений – основные отличия аналоговой информации от дискретной и цифровой. Цифровая передача данных вытесняет аналоговую передачу, недаром человечество сейчас живет в век цифровых технологий.

Видео

© 2024 lidvalbecker.ru - Мой компьютер - Lidvalbecker